The Movement of Goods Around the Cell

By Patricia Bassereau and Bruno Goud The Movement of Goods Around the Cell A biologist and a physicist collaborate on a decade-long exploration of the physical parameters of membrane traffic in eukaryotic cells. 3-D reconstruction of confocal images showing membrane tubes pulled from a giant unilamellar vesicle by kinesin motors along microtubules. The tube diameter is about 100 nm and the vesicle diameter about 15 μm.Courtesy of Cécile Leduc In proka

Written byPatricia Bassereau and Bruno Goud
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

In prokaryotic cells, simple diffusion is largely responsible for getting nutrients to where they need to be and for removing waste products. But eukaryotes, which are much more complex, require a specialized mass-transit system. This system consists of membrane-bound structures called transport carriers that ferry cargo into, out of, and around the cell. Over the past decade, our interest has centered on this system, particularly on the interplay between the biophysical properties of the membranes and the way in which these properties are exploited by specific biological molecules to construct and direct this transport system. It is an ideal topic for collaboration between a biologist and a physicist.

1

The other of us (Patricia) was trained as an experimental physicist in soft matter and had worked initially on the physical aspects of liquid crystals. The intrinsic nonequilibrium nature of biological membranes captured Patricia’s interest, leading her to study, in collaboration ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies