The Protein Tango

By Bob Grant The Protein Tango Researchers unravel the complexities of coupled protein binding and folding and lead others towards new drug targets. pKID (orange) bound to KIX (blue) Image by Adrian Turjanski Proteins don’t typically behave tractably. The molecular interaction between two proteins is often a lot more complicated than one fully formed protein fitting into anot

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Proteins don’t typically behave tractably. The molecular interaction between two proteins is often a lot more complicated than one fully formed protein fitting into another, lock-and-key style. Especially when considering the lightning-fast connections being formed, broken, and re-formed when signaling proteins interact. Some critical signaling proteins exist in highly disordered, or unfolded, forms and only fold into their final conformations when they encounter and engage their molecular dance partners.

But until Scripps Research Institute structural biologist Peter Wright and colleagues described the intricate and fast-paced dance between one of these “intrinsically disordered proteins” and its target, researchers were left to guess about the kinetics and structural changes involved in these pairings. Wright and his coauthors characterized the complex and fluid interaction between a disordered protein segment, the phosphorylated kinase–inducible activation domain (pKID) of the cAMP response element binding (CREB) transcription factor, and its binding partner, the KIX domain of the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Bob Grant

    From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours