The successful squish

By Jef Akst The successful squish GFP-tubulin spindle of a Ptk2 cell, before and after compression. Courtesy of Sophie Dumont It was the last week of her summer of research at Woods Hole Marine Biological Laboratory on the coast of Massachusetts in 2007, and biophysicist Sophie Dumont decided to try one final experiment. With the state-of-the-art microscopes that had been loaned to the research station, Dumont started pressing on mammalian cells a

Written byJef Akst
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

It was the last week of her summer of research at Woods Hole Marine Biological Laboratory on the coast of Massachusetts in 2007, and biophysicist Sophie Dumont decided to try one final experiment. With the state-of-the-art microscopes that had been loaned to the research station, Dumont started pressing on mammalian cells and watching what happened. She was hoping to see the effects of such mechanical distortion on the mitotic spindle, the apparatus responsible for divvying up the chromosomes during cell division. It was an important experiment, since mechanical forces may direct the length of the spindle, which varies greatly during development and between cell types, so understanding how the spindle responds to those forces could help illuminate that process. However, like so many of her attempts earlier that year, she succeeded only in killing the cells. Until, that is, the very last night.

It was already dark outside, but Dumont’s ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH