The U.S. Is Not Making A Big Enough Investment In Its Own Scientific Future

Since the inception in California of the science-technology domain now known as “biotechnology,” the United States has been its leader internationally. Indeed, the U.S. is a major force—if not the major force—in most bioscience activity around the globe. A 1987 National Science Foundation study of 3,500 journals published worldwide found that the U.S. was the source of 20,000 of some 51,000 articles in molecular biology, pharmacology, immunology, cardiovascular research

Written byMartin Apple
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Since the inception in California of the science-technology domain now known as “biotechnology,” the United States has been its leader internationally. Indeed, the U.S. is a major force—if not the major force—in most bioscience activity around the globe. A 1987 National Science Foundation study of 3,500 journals published worldwide found that the U.S. was the source of 20,000 of some 51,000 articles in molecular biology, pharmacology, immunology, cardiovascular research, and agricultural sciences.

However, this dominance can drop dramatically in the next decade, and only partially for reasons of increasing capability among other nations. Much more significant, the U.S. has not invested adequately in its own scientific future. For example, more than 60% of U.S. high school math teachers have not taken a college level course in applications of math to problem solving. A fourth have not taken a college-level course involving probability and statistics. One seventh have not even taken ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH