Tissue Microarrays: Advancing Clinical Genomics

Image: Courtesy of Biocat SCORES OF CORES: Each tissue core on this microarray provides another datapoint that helps researchers better define the molecular characteristics of interesting genes. In 1997, Juha Kononen, a postdoctoral fellow at the National Human Genome Research Institute, was pondering the significance of the recently developed DNA microarray. He was studying genetically altered genes in cancerous cells using fluorescence in situ hybridization and immunostaining of indivi

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

In 1997, Juha Kononen, a postdoctoral fellow at the National Human Genome Research Institute, was pondering the significance of the recently developed DNA microarray. He was studying genetically altered genes in cancerous cells using fluorescence in situ hybridization and immunostaining of individual tissue sections. The process was, he says, "very laborious." Kononen wondered whether a technology based on DNA biochips could aid in his research. "I thought why could you not invert the concept? Instead of laying down hundreds or thousands of probes, how about laying down hundreds or thousands of tissue spots and probing them one antibody or gene probe at a time." Kononen ap-proached his advisor, Olli Kallioniemi, NHGRI section head for the cancer genetics branch, who gave the green light to proceed.

What Kallioniemi and Kononen developed was the tissue microarray (TMA), an ordered array of tissue cores--up to 1,000 of them--on a single glass slide.1 The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jeffrey Perkel

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo