Tissue Microarrays: Advancing Clinical Genomics

Image: Courtesy of Biocat SCORES OF CORES: Each tissue core on this microarray provides another datapoint that helps researchers better define the molecular characteristics of interesting genes. In 1997, Juha Kononen, a postdoctoral fellow at the National Human Genome Research Institute, was pondering the significance of the recently developed DNA microarray. He was studying genetically altered genes in cancerous cells using fluorescence in situ hybridization and immunostaining of indivi

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

In 1997, Juha Kononen, a postdoctoral fellow at the National Human Genome Research Institute, was pondering the significance of the recently developed DNA microarray. He was studying genetically altered genes in cancerous cells using fluorescence in situ hybridization and immunostaining of individual tissue sections. The process was, he says, "very laborious." Kononen wondered whether a technology based on DNA biochips could aid in his research. "I thought why could you not invert the concept? Instead of laying down hundreds or thousands of probes, how about laying down hundreds or thousands of tissue spots and probing them one antibody or gene probe at a time." Kononen ap-proached his advisor, Olli Kallioniemi, NHGRI section head for the cancer genetics branch, who gave the green light to proceed.

What Kallioniemi and Kononen developed was the tissue microarray (TMA), an ordered array of tissue cores--up to 1,000 of them--on a single glass slide.1 The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jeffrey Perkel

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo