Tissue Microarrays Coming of Age

Courtesy of Marisa Dolled-Filhart, Robert L. Camp, and David L. Rimm  CORE TECHNOLOGY: Images of a breast cancer tissue microarray core immunofluorescently stained with (clockwise from top left) a rabbit pan-cytokeratin antibody, an Estrogen Receptor antibody, and DAPI, allowing for differential fluorescent tagging of each. If there's anyone who can appreciate tissue microarrays, it's histology technician Sabina Magedson. Having worked in a pathology laboratory at M.D. Anderson Cancer Ce

Written byLaura Lane
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

If there's anyone who can appreciate tissue microarrays, it's histology technician Sabina Magedson. Having worked in a pathology laboratory at M.D. Anderson Cancer Center in Houston for years, Magedson knows all too well the tedium of staining and analyzing hundreds upon hundreds of individual tissue sections--all in the name of one part, of one experiment.

Increasingly, such low-throughput monotony is giving way to 'omics-style science, thanks to tissue microarrays (TMAs). Originally developed in the mid-1980s, tissue arrays never really caught on until Juha Kononen, who was then a postdoctoral fellow at the National Human Genome Research Institute, developed a relatively simple way to construct them in 1997.1 Today, TMAs can contain from tens to hundreds of minute tissue samples (0.6 to 2 mm in diameter) arranged on one slide. By reducing the amount of time and effort required to process them, not to mention the amount of necessary tissue and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies