If there's anyone who can appreciate tissue microarrays, it's histology technician Sabina Magedson. Having worked in a pathology laboratory at M.D. Anderson Cancer Center in Houston for years, Magedson knows all too well the tedium of staining and analyzing hundreds upon hundreds of individual tissue sections--all in the name of one part, of one experiment.
Increasingly, such low-throughput monotony is giving way to 'omics-style science, thanks to tissue microarrays (TMAs). Originally developed in the mid-1980s, tissue arrays never really caught on until Juha Kononen, who was then a postdoctoral fellow at the National Human Genome Research Institute, developed a relatively simple way to construct them in 1997.1 Today, TMAs can contain from tens to hundreds of minute tissue samples (0.6 to 2 mm in diameter) arranged on one slide. By reducing the amount of time and effort required to process them, not to mention the amount of necessary tissue and ...