Transcription factors link rhizobia, legumes

GRAS family proteins found to regulate nodules where nitrogen-fixing bacteria live

Written byIshani Ganguli
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Scientists have identified two putative plant transcription factors that are essential links in the symbiosis of rhizobial bacteria and legumes, according to two reports in this week's Science. The transcription factors–GRAS family proteins NSP1 and NSP2–may play distinct yet cooperative roles in regulating the development of nodules on the plant roots where the nitrogen-fixing bacteria reside.

"The interesting aspect of this is that we have a couple of GRAS proteins here that are fairly well positioned in the signaling pathway with clear phenotypic effects," Michael Udvardi, of the Max Planck Institute of Molecular Plant Physiology, Golm, Germany, and coauthor of a Perspective accompanying the studies, told The Scientist.

Legumes initiate the symbiotic relationship between bacteria and plant by emitting flavonoid compounds that are recognized by the bacteria. Rhizobia then produce Nod factors, oligosaccharides that elicit dramatic alterations in the gene expression and metabolism of both organisms. In the past few ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies