Transmembrane Potential

Courtesy of Anders Krogh  The Transmembrane Hidden Markov Model prediction of the topology of one photosynthetic reaction center chain. The five red bars are the predicted membrane helices and the histogram below represents the certainty with which they can be predicted. Membrane proteins do not reveal their structures easily. Because they are particularly hard to crystallize, such proteins make X-ray crystallography expensive and time-consuming. So, many investigators turn to theoretica

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Membrane proteins do not reveal their structures easily. Because they are particularly hard to crystallize, such proteins make X-ray crystallography expensive and time-consuming. So, many investigators turn to theoretical, mathematical methods to predict transmembrane protein topologies. This Hot Paper was among the first to report the application of the hidden Markov model (HMM) to such a task.

All the information and material exchange of the cell goes through transmembrane proteins. The stakes are potentially high in the hunt for transmembrane topologies. "People are doing data mining to find interesting proteins," says Hot Paper lead author Anders Krogh, a professor of bioinformatics at the University of Copenhagen. "And membrane proteins, for instance, are very important to the drug industry because receptors on the cell are membrane proteins."

Named after Russian mathematician Andrei A. Markov, whose work initiated the theory of stochastic processes, HMMs are commonly used to identify members of protein ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Eugene Russo

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo