Transmembrane Potential

Courtesy of Anders Krogh  The Transmembrane Hidden Markov Model prediction of the topology of one photosynthetic reaction center chain. The five red bars are the predicted membrane helices and the histogram below represents the certainty with which they can be predicted. Membrane proteins do not reveal their structures easily. Because they are particularly hard to crystallize, such proteins make X-ray crystallography expensive and time-consuming. So, many investigators turn to theoretica

Written byEugene Russo
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Membrane proteins do not reveal their structures easily. Because they are particularly hard to crystallize, such proteins make X-ray crystallography expensive and time-consuming. So, many investigators turn to theoretical, mathematical methods to predict transmembrane protein topologies. This Hot Paper was among the first to report the application of the hidden Markov model (HMM) to such a task.

All the information and material exchange of the cell goes through transmembrane proteins. The stakes are potentially high in the hunt for transmembrane topologies. "People are doing data mining to find interesting proteins," says Hot Paper lead author Anders Krogh, a professor of bioinformatics at the University of Copenhagen. "And membrane proteins, for instance, are very important to the drug industry because receptors on the cell are membrane proteins."

Named after Russian mathematician Andrei A. Markov, whose work initiated the theory of stochastic processes, HMMs are commonly used to identify members of protein ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control