Transplants Made to Order

FEATURE Transplants Made to Order © THOMAS RÖPKE/CORBIS Tissue engineering tackles its most formidable challenge - mimicking nature. By GORDANA VUNJAK-NOVAKOVIC The possibility that we might engineer replacements for worn out tissues - from the simple slips of cartilage that cushion joints to fully differentiated, functional grafts in a ready-to-use format - is increasingly plausible. The need is obvious. With advances in medi

| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

Tissue engineering tackles its most formidable challenge - mimicking nature.
By GORDANA VUNJAK-NOVAKOVIC

The possibility that we might engineer replacements for worn out tissues - from the simple slips of cartilage that cushion joints to fully differentiated, functional grafts in a ready-to-use format - is increasingly plausible. The need is obvious. With advances in medicine, we are outliving the functional life of our organs. Roughly one in five people reaching the age of 65 will benefit from some kind of tissue replacement or transplant in their lifetime,1 but due to poor availability, many will not. While visions of a healthy, shrink-wrapped heart ready to drop in the

chest cavity of a needy patient are pure fantasy for now, tissue engineering is remarkably close to producing biological grafts that can reestablish normal tissue structure and function across different size scales, on a long term, and with the ability to remodel in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Gordana Vunjak-Novakovic

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo