Tricking the Light—Fantastic

Techniques for achieving super-resolution imaging

Written byAmber Dance
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Modern-day optical microscopists are breaking through the diffraction barrier, the long-held rule—imposed by the very nature of light waves—that limits how closely the cell’s inner workings can be scrutinized. Using clever tricks to sidestep the boundaries set by light’s innate tendency to spread, these scientists are zooming in to view the interior of organelles previously accessible only using labor-intensive electron microscopy. “It opens a new world,” says Stefan Hell, director of the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany.

Conventional fluorescence microscopy cannot resolve a region smaller than some 200 nanometers across. That means that two objects closer than 200 nm will appear to be merged together. A single fluorescent macromolecule will also appear as a spread-out blur, so a 4-nanometer green fluorescent protein (GFP) will look like a 400-nanometer-wide smear, says Jennifer Lippincott-Schwartz, chief of the organelle biology section at the National Institute of Child Health and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH