Viral Cell Entry, circa 1980

In the late 1970s, scientists were divided on how viruses enter and infect host cells. Some investigators thought viruses were directly penetrating the cell membrane into the cytoplasm, while others argued the pathogens were first engulfed into clathrin-coated pits. As evidence, both sides used static electron microscopy images, which told different stories "depending on how you took the pictu

Written byMegan Scudellari
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

In the late 1970s, scientists were divided on how viruses enter and infect host cells. Some investigators thought viruses were directly penetrating the cell membrane into the cytoplasm, while others argued the pathogens were first engulfed into clathrin-coated pits. As evidence, both sides used static electron microscopy images, which told different stories "depending on how you took the pictures," says Ari Helenius, a professor of biochemistry at the Swiss Federal Institute of Technology (ETH) in Zurich.

In 1980, Helenius, then at the European Molecular Biology Laboratory in Germany, and colleagues combined a storyboard of electron microscopy snapshots with in vivo and in vitro biochemical analyses to describe the complete infection pathway of the Semliki Forest Virus, a simple animal virus. It turns out the virus entered cells via endocytosis in clathrin-coated vesicles, then made its way into larger vacuoles, and released its genome into the cytoplasm, depending on pH. The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas