Vitamin D helps fight TB

Findings help explain why populations with low levels of the active form of the vitamin are more at risk

Written byIshani Ganguli
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share
Vitamin D mediates a key antimicrobial response in humans against Mycobacterium tuberculosis (TB), according to a new study in Science. The findings may help explain why African-Americans, who tend to carry lower levels of vitamin D, are more susceptible to TB.The authors "were able to provide the complete series of molecular events that explains why African-American populations have enhanced susceptibility to TB and have a much more aggressive disease course," said John White at McGill University in Montreal, who did not participate in the study.As part of the innate immune system, microbial clues such as bacterial lipopeptides activate mammalian Toll-like receptors (TLR), which trigger an antimicrobial response in monocytes. In mice, this process is mediated by nitric oxide. However, the study authors, based at the University of California at Los Angeles, found in an earlier study that inhibiting NO had no effect on the human pathway.To investigate, the team, led by Robert Modlin, stimulated TLR heterodimers in vitro and analyzed the resulting gene expression profiles. They found selective up-regulation in monocytes of the gene for vitamin D receptor (VDR), which has been associated with antimicrobial activity. Another up-regulated gene, Cyp27B1, encodes the enzyme that converts vitamin D to its active form, 1,25-dihydroxyvitamin D3 (1,25D3).Adding 1,25D3 to monocytes led to the dose-dependent induction and expression of cathelicidin, an antimicrobial peptide that an earlier study connected to vitamin D regulation. In another experiment, the researchers found that cathelicidin kills M. tuberculosis in infected monocytes. The researchers next examined how endogenous vitamin D fit into the puzzle. "The technical breakthrough that allowed us to put everything together," said Modlin, was substituting fetal calf serum -- the default in immunology research -- with human serum, which contains five-fold greater amounts of pro-vitamin D. In human serum, TLR induction led to cathelicidin activity - except when either VDR or the vitamin D activating enzyme were inhibited, demonstrating the importance of both proteins in the pathway.These findings, the authors hypothesized, may help explain why African-Americans experience a higher incidence and severity of TB than other groups. African-Americans are also known to have decreased pro-vitamin D levels in their serum, because higher melanin levels make them less efficient at absorbing UV light to produce vitamin D. Dietary factors play a role as well, Modlin told The Scientist. Indeed, the group found that TLR activation triggered much lower levels of cathelicidin induction in African-American serum samples than in Caucasian. However, adding vitamin D to samples from African-Americans restored cathelicidin mRNA levels, suggesting that vitamin D supplements could boost innate immunity against TB and help treat the disease in these populations."They have now made a bridge between the primary signal that arrives at TLR2 receptors and the downstream antimicrobial response," said McGill's White, who headed the previous study showing that vitamin D induces cathelicidin expression. "There's always been this idea that vitamin D and vitamin D signaling are important for protection from infection with TB, but there hasn't been a whole lot of proof," said Margherita Cantorna at Penn State University, who did not participate in the study.The results corroborate decades of medical evidence that UV light - which allows human skin to synthesize vitamin D -- has curative effects on infection, a finding that earned Niels Ryberg Finsen the 1903 Nobel Prize for his work with UV light and skin tuberculosis.The next step "is to classify people according to skin pigmentation type and look at the correlation of vitamin D levels, tuberculosis, and induction of the pathway," Modlin said. Previous research has shown that polymorphisms in the vitamin D receptor gene correlate with variations in susceptibility to TB, so it will be interesting to see how SNPs contribute to VDR function, he added.Future research will also follow other downstream targets of the TLR triggered pathway. "The notion that cathelicidin may be at the tip of an iceberg is an exaggeration, but it may not be the only antimicrobial gene that is regulated by Vitamin D," said White, whose own work has pinpointed at least one other candidate.Ishani Ganguli iganguli@the-scientist.comLinks within this articleP.T. Liu et al., "Toll-Like receptor triggering of a vitamin D-mediated human antimicrobial response," Science, February 23, 2006. http://www.sciencexpress.orgJohn H. White http://www.medicine.mcgill.ca/physio/staffpages/jwhite.htmS. Thoma-Uszynski et al., "Induction of direct antimicrobial activity through mammalian toll-like receptors," Science, February 23, 2001. PM_ID: 11222859Robert L. Modlin http://www.cancer.mednet.ucla.edu/institution/personnel?personnel_id=8867T.T. Wang et al., "Cutting Edge: 1,25-Dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression," Journal of Immunology, September 1, 2004. PM_ID: 15322146I. Ganguli, "Gene implicated in human pigment variation," The Scientist, December 16, 2005. http://www.thescientist.com/article/display/22863/Margherita Cantorna http://www.fred.psu.edu/ds/retrieve/fred/investigator/mxc69L. Bornman et al., "Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study," Journal of Infectious Diseases, November 1, 2004. PM_ID: 15478069
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform