Courtesy of Precision Graphics, precisiongraphics.com
Cells are a riot of activity. When a cell divides, chromosomes replicate and segregate into two daughter cells; flagella wiggle around to move sperm; cilia beat so mucous doesn't accumulate in the lung; and nerve cells fire by vesicles moving around and releasing their neurotransmitters. But how does such coordinated motion happen?
The universal answer, it turns out, is molecular motors: proteins that convert the energy in adenosine triphosphate (ATP), the cellular food source, to produce a force or torque on the cargo, moving it some distance. Sometimes these motors move things a short distance (a few microns in a typical cell), and sometimes far (a meter in the sciatic nerve). But how these motors operate, in some cases, at near 100% efficiency, is a subject of intense interest.
My lab has spent the better part of 10 years addressing this issue. Being a physicist ...