Watching Bacteria Eat

Hans Kornberg has spent his career figuring out bacterial metabolism - and has had a very good time doing it.

Written byKaren Hopkin
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

It was 1945, and Hans Kornberg - who fled Nazi Germany in 1939 at the age of 11 - was trying to figure out what to do next. He had been turned on to chemistry by a fierce, pipe-smoking teacher at the grammar school he attended in Yorkshire. He wanted to continue his studies, but he didn't have the funds to enroll in a university. That's when serendipity stepped in.

"My cousin happened to be a technician-secretary to a young scientist, a biochemist, at the University of Sheffield," says Kornberg. That biochemist was Hans Krebs. Kornberg's cousin told him that Krebs was looking for a junior technician. "I applied and was summoned for interview and asked all sorts of penetrating questions, like, 'Do you know how many carbons there are in citric acid?' And I thought that as a result of the brilliance of my responses I was appointed to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH