Why Paternal Mitochondria Aren’t Passed On to Offspring

Researchers identify a C. elegans gene that leads the organelles to self-destruct in sperm following fertilization of an egg.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Caenorhabditis elegansWIKIMEDIA, NIHResearchers have uncovered a clue as to why a mother’s mitochondria are passed on to her offspring while the father’s are not. Studying sperm cells from the roundworm Caenorhabditis elegans, researchers at the University of Colorado, Boulder, and colleagues found that a gene called cps-6 encodes a mitochondrial endonuclease that degrades paternal mitochondrial DNA (mtDNA) following fertilization of an egg. Delaying this process can be fatal to the embryo, the team reported yesterday (June 23) in Science.

The research “comes closest to elucidating a key development process that has perplexed us for a long time,” geneticist Justin St. John of the Hudson Institute of Medical Research in Australia, who was not involved in the research, told The New York Times.

Qinghua Zhou of the University of Colorado and colleagues examined the C. elegans cells using electron microscopy and tomography, finding that the paternal mitochondria started to self-destruct even before they were engulfed by autophagosomes. Using RNA analysis, the researchers identified cps-6 as an important part of this process. When this gene was removed, the paternal mitochondria persisted, resulting in increased embryo mortality.

“This provides evidence that persistence of paternal mitochondria compromises animal development and may be the impetus for maternal inheritance of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tanya Lewis

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo