Wrestling with Recurrent Infections

By Gayatri Vedantam and Glenn S. Tillotson Wrestling with Recurrent Infections Clostridium difficile is evolving more robust toxicity, repeatedly attacking its victims, and driving the search for alternative therapies to fight the infection. photoillustration by Sean Mccabe; Science Photo Library (boy); Sebastian Kaulitzki/ Istockphoto.com (Intestines); Olena Timashova/Istockphoto.com (Green bacteria); Jiri Flogel/Istockphoto.com (Blue bacteria) As infectiou

Written byGayatri Vedantam and Glenn S. Tillotson
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

As infectious bacteria go, Clostridium difficile may be one of the most vexing for researchers, clinicians, and patients alike. It spreads from person to person by ingestion of the bacterium’s spores, which can not only remain viable for long periods of time outside of a human host, but can withstand most common disinfectants. Within the body, the spores can survive the acidity of the stomach, germinating in the intestines where the bacteria release toxins that wreak havoc on the bowel, causing severe abdominal pain and diarrhea. And while the proper regime of antibiotics usually eliminates the infection, residual spores can remain, and the bacteria can reemerge with a vengeance weeks or months later.

1 and a third or more of CDI patients experience recurrence of the disease within the first month. Furthermore, recently evolved hypervirulent strains of C. difficile produce robust amounts of the disease-causing toxins, more spores, and additional ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems