Yeast: An Attractive, Yet Simple Model

Yeast possesses many characteristics that make it especially useful as a model system in the laboratory, including an entirely sequenced genome. Recently, a number of researchers published studies detailing the transition from genome sequencing to functional genomics. Notably, these scientists have developed new high-throughput approaches to the characterization of large numbers of yeast genes. In aggregate, these studies make yeast one of the most well-characterized eukaryotic organisms known.

Written byGregory Smutzer
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Yeasts are free-living, unicellular eukaryotes--fungi. Yet despite their simplicity, yeast cells are similar to higher eukaryotes in several important ways.1 For example, they contain membrane-bound subcellular organelles and possess a similar cytoskeletal organization. In addition, the chromosomal structure of yeast DNA is comparable to that found in higher eukaryotes, with similar mechanics, except that no histone H1 is present.

It is believed that the mechanisms of transcriptional activation and repression are also conserved in yeast and higher eukaryotes, and, like those of other eukaryotes, yeast mRNA transcripts are capped and polyadenylated. Similarly, the proteolytic cleavage of precursor proteins and the secretion of these proteins in yeast show many similarities to those of higher eukaryotes. Finally, a large number of homologous proteins in yeasts and mammals share high DNA sequence and functional identity. The mammalian small G-protein Ras, for example, can complement yeast RAS in a RAS-deficient yeast strain.1 In fact, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH