Yeast: An Attractive, Yet Simple Model

Yeast possesses many characteristics that make it especially useful as a model system in the laboratory, including an entirely sequenced genome. Recently, a number of researchers published studies detailing the transition from genome sequencing to functional genomics. Notably, these scientists have developed new high-throughput approaches to the characterization of large numbers of yeast genes. In aggregate, these studies make yeast one of the most well-characterized eukaryotic organisms known.

Written byGregory Smutzer
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Yeasts are free-living, unicellular eukaryotes--fungi. Yet despite their simplicity, yeast cells are similar to higher eukaryotes in several important ways.1 For example, they contain membrane-bound subcellular organelles and possess a similar cytoskeletal organization. In addition, the chromosomal structure of yeast DNA is comparable to that found in higher eukaryotes, with similar mechanics, except that no histone H1 is present.

It is believed that the mechanisms of transcriptional activation and repression are also conserved in yeast and higher eukaryotes, and, like those of other eukaryotes, yeast mRNA transcripts are capped and polyadenylated. Similarly, the proteolytic cleavage of precursor proteins and the secretion of these proteins in yeast show many similarities to those of higher eukaryotes. Finally, a large number of homologous proteins in yeasts and mammals share high DNA sequence and functional identity. The mammalian small G-protein Ras, for example, can complement yeast RAS in a RAS-deficient yeast strain.1 In fact, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies