A Nuanced Knockout

If using in vivo RNAi has you down for the count, here's what you need to know.

Written byAlla Katsnelson
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

For those frustrated by the brute force of knockout mice when studying gene function, in vivo RNA interference (RNAi) would seem to have come to the rescue. In theory, in vivo RNAi promises a more nuanced approach that gives researchers temporal and spatial control in knocking down genes.

That doesn't mean, however, that it's easy to use. The notorious challenge with RNAi, even in cell culture, is delivery. "With in vivo, the problems are exactly the same, except ten times as hard," says Mark Behlke of Integrated DNA Technologies in Coralville, Iowa. Users struggle with getting RNA to their target organ or cell type, efficiently transfecting cells, and managing toxicity and off-target effects.

A handful of tricks can remedy these problems. For synthetic small interfering RNAs, for example, there are cationic lipid reagents to neutralize RNA's negative charge and ease it through the cell membrane; chemical modifications to protect RNA ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research