ABI Poised to Break the SNP Genotyping Speed Barrier?

Courtesy of Applied Biosystems Single nucleotide polymorphisms--variations at specific nucleotide positions in the genome sequences of two individuals--are perhaps the most common form of genetic diversity; it is estimated that 3-10 million SNPs are present in the human genome. Researchers use these markers to map disease genes, and in the burgeoning field of pharmacogenomics (personalized medicine). Such research necessarily requires the ability to genotype on a grand scale, but until recent

Written byDeborah Stull
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Single nucleotide polymorphisms--variations at specific nucleotide positions in the genome sequences of two individuals--are perhaps the most common form of genetic diversity; it is estimated that 3-10 million SNPs are present in the human genome. Researchers use these markers to map disease genes, and in the burgeoning field of pharmacogenomics (personalized medicine). Such research necessarily requires the ability to genotype on a grand scale, but until recently, technology and cost prevented work at this level. A new product from Applied Biosystems (ABI) of Foster City, Calif., currently in beta-testing, could make such research a reality.

The SNPlex™ system is a reagent and software product for inexpensive, ultrahigh-throughput genotyping using the ABI 3730 and 3730xl capillary electrophoresis-based DNA analyzers. As the name implies, the system couples SNP genotyping and multiplexing, or the ability to genotype several target sequences in a single biological sample. According to Jay Kaufman, senior product line manager ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies