Advances in Cellular Image Processing

EMBRYOGENESIS UNFOLDING IN 3-D:Left and Right Image: Courtesy of Wen Bin Tsai & W. Kinsey Center image: Courtesy of H. Matsumoto & S. K. DeyThree-dimensional projections created from Z-stacks of a zebrafish embryo at the four-cell stage (left), a blastocyst (center), and a more fully developed zebrafish embryo (right). DAPI-stained nuclei are colored blue, while various specific proteins are labeled green (FITC/FITX) and red (rhodamine).Like much of science, imaging has become almost ent

Written byMike May
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

Left and Right Image: Courtesy of Wen Bin Tsai & W. Kinsey Center image: Courtesy of H. Matsumoto & S. K. Dey

Three-dimensional projections created from Z-stacks of a zebrafish embryo at the four-cell stage (left), a blastocyst (center), and a more fully developed zebrafish embryo (right). DAPI-stained nuclei are colored blue, while various specific proteins are labeled green (FITC/FITX) and red (rhodamine).

Like much of science, imaging has become almost entirely computerized, with digital capture devices replacing more traditional film. Capturing the data in digital form simplifies work, for instance by cutting out lengthy film processing steps, and it aids in data archiving. More important, however, digital imaging enables a new variety of experimental approaches.

When asked to pick the most important recent advance in imaging cells, John Kirn, associate professor of biology at Wesleyan University in Middletown, Conn., points to the two-photon, laser-scanning confocal microscope, which provides three-dimensional ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies