Assessing Differential Gene Expression

As the complete human genome sequence emerges, research shifts from questions of genomics to those of proteomics--determining the function of individual gene products and mapping global gene expression patterns. Gene expression patterns change continually during the course of tissue development and differentiation. The expression of different gene products at any given time within a particular cell defines the cell's characteristics and helps determine how it will react to external stimuli. Alte

Written byBarbara Cunningham
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Researchers have many tools at their disposal to measure differential gene expression.1 Certainly microarrays are a viable option,2 but relatively few researchers have access to this big ticket technology. Instead scientists often rely on relatively "low tech" protocols including Northern blotting, RNase protection assays, differential plaque hybridization, subtractive hybridization, differential display, representational difference analysis, serial analysis of gene expression (SAGE), and rapid analysis of gene expression (RAGE).3,4

Many companies now offer one-step RT-PCR kits, in which reverse transcription and amplification occur within the same reaction tube and cycle. Furthermore, scientists can run multiple reactions in the same tube, a process called multiplexed PCR, to control for sample-to-sample variation. This technique involves the use of primers that amplify an internal standard--typically a housekeeping gene--within each experimental reaction. Analogous to the interpretation of Northern blot signals, the quantification of the experimental signal relative to the control reflects expression changes between samples. Alternatively, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH