Atherosclerotic inflammatory switch

controls macrophage inflammatory response in atherosclerotic lesions

Written byTudor Toma
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The progression of an atherosclerotic lesion involves lipid-laden macrophages (foam cells) migrating to vascular lesion sites, where they elicit a chronic inflammatory response. Despite some progress in understanding the molecular mechanisms of macrophage lipid loading, the mechanisms that control macrophage inflammatory status have been unclear. In the September 11 Sciencexpress, Chih-Hao Lee and colleagues at the Salk Institute for Biological Studies show that peroxisome proliferator–activated receptor δ(PPARδ) controls an inflammatory switch in the macrophages involved in the atherosclerotic lesion (Sciencexpress, DOI:10.1126/science.1087344, September 11, 2003).

Lee et al. examined peritoneal macrophages in mice lacking the low-density lipoprotein receptor (LDLR-/-) transplanted with PPARδ-/- bone marrow. They observed that deletion of PPARδ from foam cells increased the availability of inflammatory suppressors, which in turn reduced the atherosclerotic lesion by more than 50%.

"We propose an unconventional ligand-dependent transcriptional pathway in which PPARδ controls an inflammatory switch through its association and disassociation with transcriptional ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series