Axol Bioscience introduces CiPA-validated human stem cell-derived ventricular cardiomyocytes to help improve drug discovery

Axol Bioscience Ltd. (Axol), an established provider of iPSC-derived cells, media, and characterization services for life science discovery, today announced that its human induced pluripotent stem cell (iPSC)-derived ventricular cardiomyocytes have undergone comprehensive in vitro pro-arrhythmia assay (CiPA) validation. Using this assay, the cells were shown to be suitable for measuring cardiotoxicity, offering scientists a robust cardiac model for drug discovery and screening.

Written byAxol Bioscience
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Axol’s human iPSC-derived ventricular cardiomyocytes are manufactured at scale according to strict quality control standards using ISO 9001-accredited quality management systems, providing a continuous source of cells from the same genetic background for use in multiple experiments. This offers a physiologically relevant in vitro research model of human heart cells to reliably and repeatably test drug candidates for cardiotoxicity at scale.

With the advent of human iPSC-derived cardiomyocytes, the US Federal Food and Drug Administration Agency (FDA) launched a working group to assess the utility of these cells in reproducing cardiotoxicity in a dish, known as CiPA*. The assay tests cells with 28 compounds that are known to be cardiotoxic and induce the fatal arrhythmia “Torsades de Pointes”. Clyde Biosciences, a CRO that specializes in cardiotoxicity assays, used this assay to validate Axol’s cardiomyocytes for cardiac safety testing. Using these cells could help researchers to identify unsuitable drug candidates earlier ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies