B Signaling

NEGATIVE FEEDBACK:© AAASNF-κB is held inactive in the cytoplasm by three IκB isoforms. Cell stimulation activates the kinase IKK which leads to phosphorylation and degradation of IκB. This frees NF-κB to enter the nucleus and activate genes including IκBα. IκBβ and -ε are synthesized at a steady rate, allowing for complex temporal control including negative feedback. (From A. Hoffmann et al., Science, 298:1241–5, 2002.)The transcription fac

Written byAileen Constans
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

© AAAS

NF-κB is held inactive in the cytoplasm by three IκB isoforms. Cell stimulation activates the kinase IKK which leads to phosphorylation and degradation of IκB. This frees NF-κB to enter the nucleus and activate genes including IκBα. IκBβ and -ε are synthesized at a steady rate, allowing for complex temporal control including negative feedback. (From A. Hoffmann et al., Science, 298:1241–5, 2002.)

The transcription factor NF-κB exists in unstimulated cells as a cytoplasmic homo- or heterodimer bound to inhibitory IκB protein. NF-κB has received a great deal of attention since its discovery more than two decades ago, and for good reason. It regulates genes implicated in innate immunity, inflammation, cancer, and apoptosis. And the molecules associated with the NF-κB signaling pathway are prime drug targets.

This issue's Hot Papers focus on distinct parts of the NF-κB pathway. An interdisciplinary approach combining computer modeling of IκB isoform activity with ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies