Bacterial-Mineral Electrical Grids

Different microbe species can cooperate via electric currents, with the help of conductive minerals in the sediment.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Geobacter sulfurreducensKATO ET AL.

Japanese researchers have found that two species of bacteria can use minerals in the soil to transfer electrons over long distances, according to research published today (June 4) in Proceedings of the National Academy of Sciences. This creates currents between the species, and turns them into living electrical grids, allowing them to cooperate in breaking down chemicals in their environment that they could not metabolise individually.

The result is a “big step” towards acceptance of the electron as a key element of bacterial life, said Lars Peter Nielsen from Aarhus University, who was not involved in the study. “Microbial electron transfer is no longer just an exotic and marginal topic, but making its way to mainstream microbial ecology.”

Relays of electrons are the stuff of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH