Bacterial-Mineral Electrical Grids

Different microbe species can cooperate via electric currents, with the help of conductive minerals in the sediment.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Geobacter sulfurreducensKATO ET AL.

Japanese researchers have found that two species of bacteria can use minerals in the soil to transfer electrons over long distances, according to research published today (June 4) in Proceedings of the National Academy of Sciences. This creates currents between the species, and turns them into living electrical grids, allowing them to cooperate in breaking down chemicals in their environment that they could not metabolise individually.

The result is a “big step” towards acceptance of the electron as a key element of bacterial life, said Lars Peter Nielsen from Aarhus University, who was not involved in the study. “Microbial electron transfer is no longer just an exotic and marginal topic, but making its way to mainstream microbial ecology.”

Relays of electrons are the stuff of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ed Yong

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer