Benching Bases

By Kelly Rae Chi Benching Bases How to do heavy computational lifting in genomes and transcriptomes You've unpacked your next-generation sequencing system and popped in some DNA or RNA. Five days later, you've sequenced 50 million tiny strings of nucleotides. Then what? Based on their sequences, you have to align all the fragments, called "reads," with the help of a reference genome—a fully assembled sequence from the same species. In the abse

Written byKelly Rae Chi
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

You've unpacked your next-generation sequencing system and popped in some DNA or RNA. Five days later, you've sequenced 50 million tiny strings of nucleotides. Then what?

Based on their sequences, you have to align all the fragments, called "reads," with the help of a reference genome—a fully assembled sequence from the same species. In the absence of a reference, you're left with assembling the genome based solely on the portions of the reads that overlap with each other. For both alignment and assembly, "computation becomes a big issue," says Steven Salzberg, director of University of Maryland's Center for Bioinformatics and Computational Biology. "That's a huge amount of data, and in fact even streaming the data off the machine onto other computers causes network bandwidth problems."

That's because most newer technologies generate shorter reads—roughly 25 to 50 nucleotides in length—than those generated using traditional Sanger sequencing. The newer methods create smaller ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies