"Big Cross" Lands Sticklebacks in the Spotlight

Marine threespine sticklebacks haven't morphologically changed in an estimated 10 million years, but their freshwater offshoots show no signs of slowing down. These 5-cm-long, freshwater fish have undergone a recent evolutionary change, variably losing their calcified body armor and retractable pelvic and dorsal spines. Remarkably, isolated marine and freshwater sticklebacks can be hybridized in the laboratory, a fact that is allowing researchers to analyze the genetics behind their natural dive

Written byDavid Secko
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Marine threespine sticklebacks haven't morphologically changed in an estimated 10 million years, but their freshwater offshoots show no signs of slowing down. These 5-cm-long, freshwater fish have undergone a recent evolutionary change, variably losing their calcified body armor and retractable pelvic and dorsal spines. Remarkably, isolated marine and freshwater sticklebacks can be hybridized in the laboratory, a fact that is allowing researchers to analyze the genetics behind their natural diversification.

"Despite all of the interest in how evolution really works, and despite all we know about the genetic pathways that build tissues, we have surprisingly few real examples where traits in natural populations are understood at the molecular level," says David Kingsley, a recent convert to stickleback research at Stanford University. Kingsley and colleagues have made the link, finding that a single gene might control pelvic armor loss in freshwater sticklebacks.

It's a finding that goes against a longstanding belief ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel