Bio-engineered Jellyfish Swim

Researchers create a swimming jellyfish mimic by reverse-engineering the creature's pumping action, paving the way for new methods of engineering replacement organs.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Building biological systems from scratch traditionally involves copying the original, but simply mimicking an animal’s shape and muscle alignment isn't enough. In a new study published today (July 22) in Nature Biotechnology, a team from California Institute of Technology and Harvard University worked to understand how a jellyfish’s motions and interactions with the surrounding water lead to swimming, then used available bioengineered tissues to construct a jellyfish mimic that could move through the water just like the real thing.

"I was amazed at how effectively they allowed the vehicle to emulate swimming by natural organisms," said Jack Costello, a jellyfish expert from Providence College, Rhode Island, who was not involved in the study. "I was so impressed with the attention to getting all the important variables lined up so that they emulated the animals." Costello added that the technique could aid vehicle design, as well as help researchers make more ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Hayley Dunning

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours