Biomolecular Computing Gets a "Killer App"

© Nature Publishing GroupDespite buzzworthy applications such as cryptography and nanoelectronics, bio-molecular computing – the use of macromolecules such as DNA and enzymes to perform computations – will likely never match electronic computing in its speed and scalability. But a group of researchers, led by Ehud Shapiro of the Weizmann Institute in Israel, has found a promising "killer app" for biomolecular computing: molecular-scale diagnostics.1Using software programmed in g

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

© Nature Publishing Group

Despite buzzworthy applications such as cryptography and nanoelectronics, bio-molecular computing – the use of macromolecules such as DNA and enzymes to perform computations – will likely never match electronic computing in its speed and scalability. But a group of researchers, led by Ehud Shapiro of the Weizmann Institute in Israel, has found a promising "killer app" for biomolecular computing: molecular-scale diagnostics.1

Using software programmed in genetic rather than computer code, Shapiro's nucleic acid-based bio-PC discerns diseases such as cancer by the concentration of specific mRNAs, and outputs either a therapeutic nucleic acid or its suppressor as a result.

Duke University computer scientist John Reif calls the research a "landmark piece of work" in DNA computing, but cautions that it's only a first step. These preliminary experiments were performed under tightly controlled, test-tube conditions. To have therapeutic value, the computers must be installed inside cells and protected ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Aileen Constans

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours