Bringing Living Cells Into Focus: A View of Inverted Microscopes

Date: March 30, 1998 Author: Jim Kling Tables of Vendors What's really going on here? That question used to puzzle bleary-eyed microscopists as they stared at slides of immobilized cells--dead cells, of course. Then along came the inverted microscope. Its unique design placed the light source above the sample and the magnifying objective below it, allowing these new microscopes to peer into live cells bathed in media. Suddenly, scientists had a new view of the neighborhoods and boroughs occupied

Written byJim Kling
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Date: March 30, 1998
Author: Jim Kling
Tables of Vendors
What's really going on here? That question used to puzzle bleary-eyed microscopists as they stared at slides of immobilized cells--dead cells, of course. Then along came the inverted microscope. Its unique design placed the light source above the sample and the magnifying objective below it, allowing these new microscopes to peer into live cells bathed in media. Suddenly, scientists had a new view of the neighborhoods and boroughs occupied by microtubules, vacuoles, and all the other cellular structures.

Zeiss: Immunofluorescence of human skin cells, triple fluorescence; triple exposure with the single bandpass filter sets cytokeratin filaments (FITC), desmosomes (Texas red) and DNA (DAPI). Increasingly, cell biologists are studying live processes, "the inverted microscope lends itself to observing live material because [cells need] to be in medium or they need to be perfused," says Reinhard Enders, senior technical marketing manager at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies