Building a Silicon Brain

Computer chips based on biological neurons may help simulate larger and more-complex brain models.

| 14 min read
microchip silicon brain artificial intelligence

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

ABOVE: SMART CHIP: A neuromorphic chip designed by the Heidelberg group of physicist Karlheinz Meier. The chip features 384 artificial neurons connected by 100,000 synapses, and operates approximately 100,000 times faster than the speed at which the brain computes.
© HEIDELBERG UNIVERSITY

In 2012, computer scientist Dharmendra Modha used a powerful supercomputer to simulate the activity of more than 500 billion neurons—more, even, than the 85 billion or so neurons in the human brain. It was the culmination of almost a decade of work, as Modha progressed from simulating the brains of rodents and cats to something on the scale of humans.

The simulation consumed enormous computational resources—1.5 million processors and 1.5 petabytes (1.5 million gigabytes) of memory—and was still agonizingly slow, 1,500 times slower than the brain computes. Modha estimates that to run it in biological real time would have required 12 gigawatts of energy, about six times the maximum ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sandeep Ravindran

    This person does not yet have a bio.

Published In

May 2019 The Scientist Issue
May 2019

AI Tackles Biology

How machine learning will revolutionize science and medicine.

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours