C. elegans Physical Map, circa 1989

By Elie Dolgin C. elegans Physical Map, circa 1989 © Science Museum / Science & Society Picture Library By the 1980s, Sydney Brenner’s “worm project” was in full swing. Brenner and his crack team of researchers at the Laboratory of Molecular Biology (LMB) in Cambridge, UK, had already constructed a detailed genetic map of the nematode Caenorhabditis elegans and described the worm’s embryonic and nervous system development i

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

By the 1980s, Sydney Brenner’s “worm project” was in full swing. Brenner and his crack team of researchers at the Laboratory of Molecular Biology (LMB) in Cambridge, UK, had already constructed a detailed genetic map of the nematode Caenorhabditis elegans and described the worm’s embryonic and nervous system development in exquisite four-dimensional detail. What was missing, however, was an efficient way to isolate the genes for molecular analysis.

To address this problem, Alan Coulson and John Sulston developed a high-resolution “fingerprinting” technique to line up DNA fragments cloned using hybrid plasmid vectors called cosmids; by 1984 they had successfully assembled a physical map that spanned about 60% of the worm genome. Bob Waterston of Washington University in St. Louis, who spent a sabbatical at the LMB in 1985, then devised a different approach to complete the map. Together with Coulson and Sulston, he created yeast artificial chromosome (YAC) clones for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Elie Dolgin

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo