Can Publication Records Predict Future PIs?

Researchers present a tool that uses a scientist’s PubMed data to estimate the probability of becoming a principal investigator in academia.

Written byTracy Vence
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, MOONLIGHTBULBThe odds of a scientist becoming an academic principal investigator (PI) can be predicted with publication data, according to Lucas Carey from Spain’s Pompeu Fabra University and his colleagues. The team developed an online tool, dubbed PIPredictor, which uses a machine-learning approach to analyze a user’s PubMed data and that has already churned out more than 800 career-success estimates to date. Carey and his colleagues describe their tool in Current Biology today (June 2).

“We show that becoming a research professor is highly predictable, [and] we analyze the features that are predictive” of success, Carey told The Scientist in an e-mail. The algorithm can predict who might become a PI and how long it could take for them to do so with an area under the curve (AUC), a measurement of accuracy, of 0.83 and 0.38, respectively.

While he was a postdoc in Eran Segal’s lab at the Weizmann Institute of Science in Rehovot, Israel, Carey and two then-PhD students, David van Dijk and Ohad Manor, decided to apply the machine learning-based approaches they were using to predict molecular mechanisms from gene expression data to guess who among them might one day become a PI. “There was quite a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies