Carcinogen selection

A recent hypothesis suggests that the type of genetic instability in cancers is the result of Darwinian selection pressures exerted by specific carcinogens. In the May 8 Proceedings of the National Academy of Sciences, Bardelli et al. describe experiments to test whether chromosomal instability (CIN) is induced by bulky-adduct-forming agents, whereas microsatellite instability is selected by methylating agents (Proc Natl Acad Sci USA 2001, 98:5770-5775). They used a variant colorectal cell line,

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

A recent hypothesis suggests that the type of genetic instability in cancers is the result of Darwinian selection pressures exerted by specific carcinogens. In the May 8 Proceedings of the National Academy of Sciences, Bardelli et al. describe experiments to test whether chromosomal instability (CIN) is induced by bulky-adduct-forming agents, whereas microsatellite instability is selected by methylating agents (Proc Natl Acad Sci USA 2001, 98:5770-5775). They used a variant colorectal cell line, HCT116-H3, with no genomic instability. When Bardelli et al. treated the cells with 2-amino-1-methyl-6-phenylimidazol[4,5-b]pyridine (PhIP), a bulky-adduct-forming carcinogen found in well-cooked beef, they isolated resistant clones that displayed a CIN phenotype. In contrast, exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) lead to the isolation of characteristic MIN cell lines. Conversely, controlled induction of the CIN phenotype (by expression of a dominant-negative hBUB1 allele) was associated with PhIP resistance. These results prove that the nature of the carcinogen can ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH