Catalase extends mouse lifespan

Targeting the antioxidant enzyme to mitochondria supports the free-radical theory of aging

Written byDon Monroe
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mice engineered to produce high levels of the antioxidant catalase live significantly longer than their wildtype counterparts, according to a report published online by Science this week. Researchers observed the largest lifespan extension when they targeted the catalase to mitochondria, which are thought to be the major cellular source of reactive oxygen species (ROS) such as hydrogen peroxide.

The results lend support to the free-radical theory of aging, which attributes many of the infirmities of old age to accumulated cellular damage caused by ROS and the free radicals they generate. Although such damage increases with age, previous attempts to manipulate it have yielded contradictory results. "Until this study, it wasn't clear that it was truly a cause [of aging in mammals] or an effect that correlated with age," David Sinclair of Harvard Medical School, Boston, who was not involved in the study, told The Scientist. "It's a pretty big deal," ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH