Catalyzing RNA

By Sean P. Ryder Catalyzing RNA Finding hidden ribozymes in eukaryotic genomes 3D structure of a hammerhead ribozyme Cossa Giacomo / pdb file 1RMN Once thought to be a biological rarity, self-cleaving RNA enzymes—ribozymes—are being discovered in increasing numbers, thanks to new search tools. Now, in addition to studying their unusual chemical properties, scientists will be able to identify ribozymes in useful

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Once thought to be a biological rarity, self-cleaving RNA enzymes—ribozymes—are being discovered in increasing numbers, thanks to new search tools. Now, in addition to studying their unusual chemical properties, scientists will be able to identify ribozymes in useful model organisms; bringing the field one step closer to defining whether these catalytic RNAs have a broad function in gene regulation.

Ribozymes were first identified as “selfish” genetic elements—genes that replicate themselves apart from usual cellular mechanisms, often harming the host cell—such as the genetic material found in viruses and satellite plasmids. This suggests that ribozymes are remnants of an evolutionary era predominated by RNA life forms. Researchers have been able to artificially evolve new RNA catalysts in the lab, demonstrating that they should be able to arise quite readily,1 but the slow rate of discovery of naturally occurring ribozymes suggested that ribozymes may actually be quite rare—curiosities of unusual biological systems ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Sean P. Ryder

    This person does not yet have a bio.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome