Researchers have identified an important event in the enigmatic final step of mammalian cell division: thin spiral fibers may physically "cut" one daughter cell from the other, a team reports this week in linkurl:Science.;http://www.sciencexpress.org.
3D reconstruction of high pressure-frozen cells. Red: microtubules; green: 17 nm diameter filaments.
Image copyright Science/AAAS
The finding sheds new light on a fundamental biological process and could lead to a better understanding of cancer, which can be caused by improper cell division. "It's an impressive paper, creatively done with spectacular microscopy," said linkurl:Stephen Doxsey,;http://www.umassmed.edu/cellbio/faculty/doxsey.cfm who studies cell division at the University of Massachusetts Medical School and was not involved in the study. Though the early stages of cell division are generally well understood, the final stage during cell division when cells split, called abscission, has remained the obscure because it is difficult to assay and visualize. As a result, theories abound about how...
3D microscopy of late-stage intercellular bridge, stained with fluorescent phalloidin (green) and anti-α-tubulin antibody (red)
Image copyright Science/AAAS
Guizetti, J., et al., "Cortical Constriction During Abscission Involves Helices of ESCRT-III-Dependent Filaments," Science, doi:10.1126/science.1201847.




Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!