Cetacean Cacophony

Seafloor seismometers record hundreds of thousands of fin whale calls, allowing marine geophysicists to track the elusive marine mammals.

Written byChris Palmer
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

A HEFTY RACKET: A fin whale cruises a 2,180-square-kilometer, federally protected marine sanctuary located at the mouth of Massachusetts Bay in the Atlantic Ocean.© FRANCOIS GOHIER/SCIENCE SOURCEThe call of nature can sometimes sound intrusive to human ears. Squawking birds. Buzzing insects. For marine geophysicist William Wilcock, it was the incessant singing of fin whales (Balaenoptera physalus) that proved most bothersome. Calls of the endangered marine mammals plagued the underwater recordings that Wilcock made to detect tiny earthquakes emanating from the North Pacific seafloor. The squeals and clicks characteristic of the whales’ transoceanic communications virtually drowned out the faint rumbles sensed by the network of seismometers. “The whale calls were a bit of a nuisance,” says Wilcock, “but I had it in the back of my mind that they could be of interest someday.” Indeed, the recordings of the notoriously elusive whales have elucidated aspects of the creatures’ swimming behavior and social life and may prove helpful in future conservation efforts.

Wilcock, a professor at the University of  Washington, first encountered fin whale calls when he was a graduate student at the Woods Hole Oceanographic Institute in the mid-1980s. He spent many late nights listening to analog seismometer data recorded near the Kane fracture zone on the floor of the Atlantic Ocean. Because earthquakes were so rare, he would speed up the tape 75 times and then digitize the recording whenever he heard an earthquake, which, at that speed, sounded “like someone cracking a whip,” says Wilcock.

Occasionally he would hear a series of shorter sounds close to the frequency range of the earthquakes. “Almost like drumbeats—very rhythmic,” he says. The late Bill Watkins, a marine mammal bioacoustic expert who worked at Woods Hole, helped Wilcock ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH