Chasing the Sun

Sunflowers may use a complex set of molecules to track the sun in the sky.

Aparna Nathan, PhD
| 3 min read
A field of yellow sunflowers in front of a blue sky.

Sunflowers follow the sun from east to west by stretching out the cells on one side of their stems

© iStock, ohishiistk

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Sunflowers, true to their name, follow the sun with their bright yellow blooms. Their stems bend as they track the solar movement from east to west; then, when the sun sets, the flowers reorient themselves toward the east to await the next sunrise.

This phenomenon, called heliotropism, is one of many ways that light can control the movement of plants. But researchers still don’t fully understand how cells control these light-triggered behaviors at the molecular level. In a recent study in PLOS Biology, plant biologists at the University of California, Davis, used gene expression profiling in sunflowers to get a closer look at the molecules at play during different light tracking behaviors.1

“Because plants are rooted in their environment, they are just so adept at anticipating and responding to environmental cues,” said Stacey Harmer, a plant biologist at the University of California, Davis, and coauthor of the study. “It isn't the way that animals learn, but it's still super impressive.”

Harmer previously studied how sunflowers’ light-seeking movement is controlled by their internal “clocks”—molecular pathways that help plants execute cyclical, time-dependent behaviors.2 Sunflowers are an especially good species to study because they are so big and move so dramatically. In an earlier study, her team found that in the morning, when the sun is still to the east, cells on the west side of the stem swell up with water and grow longer to allow the stem to bend to the east. Then, when the sun crosses to the west in the afternoon, cells on the east side of the stem grow longer.

See Also "Illuminating the Plant Gene Map"

In their new study, her team wanted to learn more about the molecular pathways that were active in sunflowers when they tracked the sun and other light sources. To do this, they first grew the plants in a lab setting where they could control the position, amount, and type of light that the plants received. Even with artificial light, the sunflowers bent toward the light, and automatically bent away from the light after 10 hours, mimicking their carefully timed night time reorientation. The researchers then collected pieces of the lit and shady sides of the stem and measured the amount of RNA encoding various proteins and pathways. As they suspected from previous work in other plant species, the auxin pathway was more active on the shady side of the stem where it could promote growth and bending toward the light.3

However, Harmer was surprised to see that the genes expressed while the plant straightened away from the light were not the same as those expressed while the plant bent toward the light, and they did not include the auxin pathway. Her team moved sunflowers outside into a field to measure genes expressed during solar tracking, and found that they were also different from the genes expressed as the plants bent toward a stationary light indoors. In their new surroundings, it only took the plants one day to learn to track the sun and reorient at night.

“Even though they don't have brains to anticipate the timing and the direction of sunrise, they seem to learn this very quickly,” said Harmer.

Based on the diversity of genes expressed in the plants under different conditions, Harmer concluded that the plants’ ability to turn toward light may be controlled by different molecular pathways than those used to track the sun, and there may even be multiple pathways in play.

See Also "A Menagerie on a Leaf"

Mannie Liscum, a plant biologist at the University of Missouri who was not involved in the study, was intrigued to see the comparisons between the bending, straightening, and solar tracking behaviors. But, he also noted that Harmer’s results in this study seemed to mirror previous studies, including his own prior work in cabbage and related plants.4 He pointed out that studying RNA alone might not be enough to conclusively say that the pathways are different. “Gene expression is not the end-all, be-all,” said Liscum.

To better understand the pathways, Harmer plans to look at differences in proteins next. She thinks that the pathways in sunflowers may also be relevant in other plants, although more studies are required.

“Working in plants, we have our expectations upturned all the time,” said Harmer. “It has been fascinating and frustrating at the same time.”

Keywords

Meet the Author

  • Aparna Nathan, PhD

    Aparna Nathan, PhD

    Aparna is a freelance science writer with a PhD in bioinformatics and genomics at Harvard University. Her writing has also appeared in The Philadelphia Inquirer, Popular Science, PBS NOVA, and more.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio