Chemyx: Analyzing Phosphorylation-State Changes in Neurodegenerative Disease with Mass Spectrometry

Subtle changes require a sensitive analysis method.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Disorder in the Brain: Proteins Gone Bad

Protein misfolding and aggregation is a hallmark of incurable neurodegenerative diseases like Alzheimer’s (AD), Parkinson’s (PD), and some dementia types. Immense efforts are underway to clarify the underlying mechanisms responsible, of which the consequences phosphorylation contributes remain incompletely understood. For example, the causative versus the consequential role of site-specific phosphorylation of aggregate-forming alpha-synuclein (aSyn) in PD continues to be contested.1,2 Moreover, hyperphosphorylation of the tau protein in AD and some types of dementia is known to drive its misfolding and aggregation, but the pathophysiological ramifications also continue to be challenged.2,3

Therefore, in addition to physiologically-relevant in vivo models, accurate technical approaches are vital for the proper study of protein behavior, since this research primarily drives the development of novel biomarkers and therapeutics. To that end, mass spectrometry (MS) is utilized to precisely determine both the extent and location of phosphorylation present on protein(s)-of-interest, which together inspires their biological functions.

Breaking Down Complex Neurodegenerative Disease with Mass Spectrometry

Researchers have two source options for MS analysis of in vivo samples: the cerebrospinal fluid (CSF) or post-mortem diseased brain ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio