Chemyx: Analyzing Phosphorylation-State Changes in Neurodegenerative Disease with Mass Spectrometry

Subtle changes require a sensitive analysis method.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Disorder in the Brain: Proteins Gone Bad

Protein misfolding and aggregation is a hallmark of incurable neurodegenerative diseases like Alzheimer’s (AD), Parkinson’s (PD), and some dementia types. Immense efforts are underway to clarify the underlying mechanisms responsible, of which the consequences phosphorylation contributes remain incompletely understood. For example, the causative versus the consequential role of site-specific phosphorylation of aggregate-forming alpha-synuclein (aSyn) in PD continues to be contested.1,2 Moreover, hyperphosphorylation of the tau protein in AD and some types of dementia is known to drive its misfolding and aggregation, but the pathophysiological ramifications also continue to be challenged.2,3

Therefore, in addition to physiologically-relevant in vivo models, accurate technical approaches are vital for the proper study of protein behavior, since this research primarily drives the development of novel biomarkers and therapeutics. To that end, mass spectrometry (MS) is utilized to precisely determine both the extent and location of phosphorylation present on protein(s)-of-interest, which together inspires their biological functions.

Breaking Down Complex Neurodegenerative Disease with Mass Spectrometry

Researchers have two source options for MS analysis of in vivo samples: the cerebrospinal fluid (CSF) or post-mortem diseased brain ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours