Chemyx: Tracing Fibers - From DiI to Modern Methods

Visualizing neuronal connections is highly important for understanding brain organization and pathophysiology. However, this data has historically been obtained through invasive and often terminal procedures. Technological advances have permitted the development of a new era of neuroanatomical tracing techniques.

Written byChemyx Inc.
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

T

racking neuronal fibers in the central nervous system is critical for understanding the organization and pathophysiology of the brain. Neuronal connections between functional areas of the brain have been historically conducted using invasive techniques in experimental animals which were often terminal procedures. The recent advent of modern technologies has advanced neuroanatomical applications and ushered in a new era of tracing neuronal fiber tracts in living brains.1 This article examines several neuroanatomical tracing techniques and their associated nuances with each system.

Mapping initial trails: Staining Protocols

The earliest examination of brain anatomy involved staining protocols to label neurons, myelin, and nuclei. This includes initial renditions of silver stains developed by Camilo Golgi which was further refined by Ramon y Cajal to visualize neurons using light microscopy. Other standard staining methods such as Hematoxylin and Eosin could differentiate axons and dendrites from astrocytes, oligodendrocytes and glial cells based on a cell’s acidophilic and basophilic properties. Dyes such as Luxol-fast blue (myelin), Nissl (neuronal bodies), and Holzer (astrocytes) began to be regularly incorporated in research laboratories studying neurons. These were complemented with specialized stains targeted for abnormal neuropathological structures including Gallyas-Braak (tau deposits) and Methenamine Silver (β-amyloid plaques).

Keeping Track: The rise of Neuro-tracers

Tracing neurons is achieved through monitoring axonal flow between synapses and neuronal cell bodies. Lipophilic fluorescent neuro-tracers such as DiI (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate) allow for anterograde and retrograde axoplasmic flow monitoring.2 Other retrograde neuro-tracers ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies