Classifying Breast Cancer Models

Image: Anne MacNamara The exciting use of cDNA microarrays to reveal molecular subclasses of human tumors has spread to the study of animal models that mimic human tumors. With unsuspected subclasses of human lymphomas, melanomas, colon carcinomas, and breast carcinomas uncovered, researchers naturally have been inspired to apply microarray analysis to animal tumor models that in some instances have been studied for decades. How closely, they wonder, will experimental tumors resemble human tum

Written byTom Hollon
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

The exciting use of cDNA microarrays to reveal molecular subclasses of human tumors has spread to the study of animal models that mimic human tumors. With unsuspected subclasses of human lymphomas, melanomas, colon carcinomas, and breast carcinomas uncovered, researchers naturally have been inspired to apply microarray analysis to animal tumor models that in some instances have been studied for decades. How closely, they wonder, will experimental tumors resemble human tumors in details of gene expression?

Complete answers will take years, if for no other reason than the extraordinary number of models investigators need to examine. For breast cancer alone there are at least 100 different mouse mammary tumor models, says Jeffrey E. Green, head of the Transgenic Carcinogenesis Group at the National Cancer Institute (NCI). Green, Richard Simon, chief of NCI's Biometric Research Branch, and their colleagues recently published the first analysis of gene expression profiles of mouse mammary tumors.1

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies