Communicating Across Kingdoms?

Researchers pinpoint microRNAs that could play a role in how Wolbachia bacteria manipulate their arthropod hosts.

Written bySandhya Sekar
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Transmission electron micrograph of Wolbachia within an insect cellPLOS BIOLOGY, SCOTT O'NEILLWolbachia bacteria live inside the cells of other species and can strongly influence the lives of their hosts. These bacteria manipulate host reproductive biology to increase their own transmission. Wolbachia have been documented in more than 40 percent of terrestrial arthropods.

Exactly how Wolbachia manage to manipulate a wide variety of hosts has puzzled scientists for decades. In a paper published in PNAS today (December 15), Sassan Asgari from the University of Queensland, Australia, and his colleagues propose a microRNA-mediated mechanism by which Wolbachia could achieve such “cross-kingdom communication.”

“This is one of the first instances showing how the bacteria are communicating with the host at a cellular level,” said Rhitoban Raychoudhury, an evolutionary geneticist at the Indian Institute of Science Education & Research Mohali who was not involved in the work.

Previous studies have shown that Wolbachia can regulate certain microRNAs (miRNAs) in the host Aedes aegypti, resulting in increased production of certain enzymes and decreased production of others, both in favor Wolbachia persistence. Using ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies