Communicating Across Kingdoms?

Researchers pinpoint microRNAs that could play a role in how Wolbachia bacteria manipulate their arthropod hosts.

Written bySandhya Sekar
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Transmission electron micrograph of Wolbachia within an insect cellPLOS BIOLOGY, SCOTT O'NEILLWolbachia bacteria live inside the cells of other species and can strongly influence the lives of their hosts. These bacteria manipulate host reproductive biology to increase their own transmission. Wolbachia have been documented in more than 40 percent of terrestrial arthropods.

Exactly how Wolbachia manage to manipulate a wide variety of hosts has puzzled scientists for decades. In a paper published in PNAS today (December 15), Sassan Asgari from the University of Queensland, Australia, and his colleagues propose a microRNA-mediated mechanism by which Wolbachia could achieve such “cross-kingdom communication.”

“This is one of the first instances showing how the bacteria are communicating with the host at a cellular level,” said Rhitoban Raychoudhury, an evolutionary geneticist at the Indian Institute of Science Education & Research Mohali who was not involved in the work.

Previous studies have shown that Wolbachia can regulate certain microRNAs (miRNAs) in the host Aedes aegypti, resulting in increased production of certain enzymes and decreased production of others, both in favor Wolbachia persistence. Using ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH