Comparing Leprosy Bacteria

Researchers sequence the genome of Mycobacterium lepromatosis, a recently discovered sister species to the primary leprosy-causing bacterium.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

IMAGE COURTESY OF LUCIO VERA-CABRERAUntil recently, researchers believed that leprosy was caused by a single species of bacterium, Mycobacterium leprae. To the surprise of the leprosy research community, in 2008, a pathologist discovered an entirely new leprosy-causing species in the liver of a deceased man from Mexico. A new full genome sequence of the organism, M. lepromatosis, shows that despite having diverged 13.9 million years ago, the two leprosy-causing species are nevertheless remarkably similar, genetically. A team led by researchers from École Polytechnique Fédérale de Lausanne in Switzerland described the M. lepromatosis genome in PNAS this week (March 23).

“It appears, to me, to be a landmark paper which really provides a bounty of insight into this newly recognized and little-understood organism,” said Richard Truman, chief of the laboratory research branch at the National Hansen’s Disease (Leprosy) Program in Baton Rouge, Louisiana. Truman, who was not involved in the research, said that M. lepromatosis was originally only characterized using a few snippets of DNA, causing some skepticism in the community about whether it was truly a new species. The sequence, he added, ends any lingering confusion.

“It’s a really beautiful study,” said Xiang-Yang Han, the pathologist who discovered M. lepromatosis. Han, who analyzes patient samples at the MD Anderson Cancer Center in Houston, Texas, was not involved in the present study but said he ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery