Making Sense of the Tumor Exome

An algorithm can pick out biologically and clinically meaningful variants from whole-exome sequences of tumors.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, NEPHRONIn the march toward personalized medicine, genotyping cancers has become more and more complex. Panels that pick up variations in hundreds of potentially important genes can help physicians determine how a particular tumor operates and the best course of treatment. Whole-exome sequencing—the analysis of all the coding regions of the genome—has been somewhat of a pipe dream for clinical oncology, but a study published today (May 19) in Nature Medicine introduces a platform for analyzing the entire exome of cancer patients’ tumors.

“It’s fantastic,” said Sameek Roychowdhury, an oncology genomics researcher at Ohio State University who did not participate in the study. “It’s what everybody needs to see happening for this field.”

The new whole-exome platform extracts DNA from a preserved tumor sample, sequences all of the coding regions in the genome, and runs the data through an algorithm that can make sense of the variations uncovered and pick out those for which an available treatment might be appropriate. Importantly, the protocol uses tumor samples fixed in formalin and embedded in paraffin, which is a standard method for storing tumor tissue, but one that tends to make sequencing a headache. “This ability to use the sequencing technology for those kinds of [preserved] materials gives us access to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies