Datawars: Grid Computing Democratizes Proteomics

Erica P. Johnson The young field of proteomics has quickly risen to match physics and meteorology in its huge appetite for computational capacity. According to Sylvie Langevin, development group manager of Montreal-based proteomics firm Caprion Pharmaceuticals, the computer processing and data handling requirements of proteomics exceed those of genomics by a factor approaching one million. "In genomics we have files of several kilobytes in size, but in proteomics we're closer to 1 [gigabyte],"

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The young field of proteomics has quickly risen to match physics and meteorology in its huge appetite for computational capacity. According to Sylvie Langevin, development group manager of Montreal-based proteomics firm Caprion Pharmaceuticals, the computer processing and data handling requirements of proteomics exceed those of genomics by a factor approaching one million. "In genomics we have files of several kilobytes in size, but in proteomics we're closer to 1 [gigabyte]," Langevin says.

Fortunately proteomics problems, such as three-dimensional visualization of protein structures and searching for matching sequences, can readily be broken up into small components that can be processed separately on different computers and then reassembled at the end. "In the trade we call them 'embarrassingly parallel,'" says Brian Carter, head of life science solutions for IBM in the United Kingdom.

GRID LINES This makes proteomics ripe for grid computing, the fast-emerging computational model for sharing resources such as servers ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Phillip Hunter

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio