Deacetylation

Edited by: Eugene Russo J. Taunton, C.A. Hassig, S.L. Schreiber, "A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p," Science, 272:408-11, 1996. (Cited in more than 195 papers since publication) Comments by Stuart L. Schreiber, professor of chemistry at Harvard University Stuart Schreiber Vincent G. Allfrey, now a professor emeritus at Rockefeller University, first detected histone deacetylase, or HDAC, activity in nuclear extracts 34 years ago; soon

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Edited by: Eugene Russo
J. Taunton, C.A. Hassig, S.L. Schreiber, "A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p," Science, 272:408-11, 1996. (Cited in more than 195 papers since publication)

Comments by Stuart L. Schreiber, professor of chemistry at Harvard University

Stuart Schreiber Vincent G. Allfrey, now a professor emeritus at Rockefeller University, first detected histone deacetylase, or HDAC, activity in nuclear extracts 34 years ago; soon after, he and other investigators showed a correlation between the acetylation state of chromatin and the rate of transcription.1 But the molecular characterization of the protein or proteins involved in deacetylation eluded identification, purification, and cloning until this paper's authors, from Harvard University, accidentally stumbled upon the sought-after enzymes in 1996. Adding to the novelty, when they checked the cloned gene's sequence against the gene bank database, they got a match with the yeast gene Rpd3p, a known transcriptional regulator. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies