Debate Over Stem Cell Origins Continues

In science, things are not always as they seem. So it is for transdifferentiation, the apparent interconvertibility of certain specialized cell types and an underlying theme at a symposium on stem cell biology and applications at the recent annual meeting of the American Association for Cancer Research (AACR) in San Francisco. "For the past three years, people have been saying that hematopoietic [blood-forming] stem cells can become just about any tissue, challenging the paradigm that there are

Written byRicki Lewis
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

According to classical embryology, cells in the early three-layered embryo receive irreversible fates: The outer ectoderm begets the skin and nervous system, the inner endoderm the digestive tract, and the sandwiched mesoderm forms nearly everything else. But in the late 1990s, experiments began showing that bone marrow can become liver, brain can become bone marrow, and other developmental detours once thought impossible do occur.1 Insights into the human condition have come from sex-mismatched transplants, in which tracking the telltale Y chromosome reveals stem cells in action, and sometimes crossing those hallowed barriers. For example, Martin Körbling, professor of blood and marrow transplantation at the M.D. Anderson Cancer Center, Houston, Texas, and coworkers examined cells from six women who had received peripheral-blood stem cells from their brothers. The women had Y-bearing cells in the skin and liver, indicating that mesoderm (hematopoietic stem cells) can become ectoderm (skin) and endoderm (liver).2 Transdifferentiation ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies