Decoding Cryptosporidium

Comparatively simple genome reveals why standard antiparasitic drugs have been ineffective

Written byHelen Dell
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Analysis of he complete genome sequence of Cryptosporidium parvum, published in the March 26 Science, reveals why this parasite has proven so notoriously difficult to treat effectively—it lacks many of the proteins targeted by current antiparasitic drugs.

C. parvum is a water- and food-borne pathogen causing acute gastrointestinal disease in healthy people, but it can cause a life-threatening chronic severe diarrhea in those who are malnourished or immunocompromised. “Despite intensive efforts over the past 20 years, there is currently no effective therapy for treating or preventing C. parvum infection in humans,” said lead author Mitch Abrahamsen, of the University of Minnesota College of Medicine.

Unlike many parasitic diseases, cryptosporidiosis is not just limited to the developing world—it is a global problem. In 1993, a major outbreak in Milwaukee infected more than 400,000 people, including about half of Milwaukee's residents with AIDS, nearly 70% of whom died within 6 months.

The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH