Deep Doo-doo

An open-access study explores the intricacies of parasite egg distribution and viability in human feces.

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

A figure from the paper depicting the method for processing the stool samplesIMAGE COURTESY OF PLOS NEGLECTED TROPICAL DISEASESDon’t let the title fool you. “An In-Depth Analysis of a Piece of Shit: Distribution of Schistosoma mansoni and Hookworm Eggs in Human Stool,” a paper published last month in PLOS Neglected Tropical Diseases, is a serious scientific study aiming to help health practitioners more accurately diagnose parasitic worm infections by studying patient stool samples.

The paper describes an experiment using stool samples from more than 200 residents of Côte d'Ivoire, or the Ivory Coast, an African country whose population suffers from schistosomiasis and soil-transmitted helminthiasis, two parasitic diseases that affect hundreds of millions of people around the world and account for more than 40 percent of the global neglected tropical disease burden.

Study participants defecated into containers designed to prevent contamination, and researchers from the Ivory Coast and Switzerland examined their feces for the distribution of worm eggs within individual turds. They also compared egg counts in homogenized stool samples to intact samples, and tested the effects of different storage methods—keeping stool on ice, draping it with damp tissues, and keeping samples in the shade.

The takeaway from the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies